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ABSTRACT

We develop a trajectory pattern learning method that has
two significant advantages over the past work. First, we
represent trajectories in the HMM parameter space, thus we
overcome the normalization problems of the existing meth-
ods. Second, we determine common trajectory paths by an-
alyzing the optimal cluster number rather than using a pre-
defined number of clusters. We compute affinity matrices
and apply eigenvector decomposition to find clusters. We
prove that the number of clusters governs the number of
eigenvectors used to span the feature affinity space. We are
thus able to automatically determine the optimal number of
patterns. We show that the proposed algorithm accurately
detects common paths for various camera setups.

1. INTRODUCTION

Past work on automatic detection of events using trajectory
based features has mostly consisted of extraction of trajecto-
ries followed by a supervised learning based classification.
There are several attempts to interpret the object activity.
For example, in [1] an activity recognition method based on
view-based template matching techniques is developed. In
this method, action is represented by a temporal template
which is a static vector-image computed from accumula-
tive motion properties at each point of the image sequences.
An action is recognized by matching this template with the
templates of known actions. Davis et al. [2] represent sim-
ple periodic events (e.g., walking) by constructing dynamic
models of periodic pattern of people’s movements and is de-
pendent on the robustness of tracking. The Hidden Markov
Model (HMM) has also been applied to activity recogni-
tion. Starner et. al [5] use an HMM to represent a simple
event and recognize this event by computing the probabil-
ity that the model produce the visual observation sequence.
The distributions of object trajectories are clustered in [4].
The resulting model included hundreds of clusters of ob-
ject trajectories. Stauffer et al. [6] estimated a hierarchy of
similar distributions of activity based using a co-occurrence
clustering. Though both of these systems learned clusters
corresponding to similar activity, they describe an objects
entire path through the environment. Note that the above

algorithms only use abstract representations of trajectories,
sometimes combined with other cues such as skin color,
etc. Although the extraction of trajectories and boundaries
is well studied, little investigation on the secondary outputs
of a tracker has been done.

In this paper, we target a more attainable goal of de-
tecting common patterns using improved tracking features.
One main difficulty of applying learning methods to the tra-
jectory data is that the trajectories usually have different
lengths, which causes the dimension of the corresponding
feature vectors to be different from each other. To adapt
a standard learning or data reduction technique, such as k-
means, k-medoids, nearest-neighbor, PCA, ICA, etc., the
number of coordinates (samples) that constitutes trajectory
is often normalized to a unit length. In other words, trajec-
tory is resampled at a different temporal scale. However,
such a normalization severely disturbs the temporal proper-
ties and may cause aliasing problems.

We overcome the above difficulties by fitting an HMM
model for each trajectory and we introduce parameter space
representations of tracked objects. These representations
enables pair-wise evaluation of the similarity between the
trajectories. We adapt a spectral clustering based learning
method that is also robust to increase in the dimensionality
of the feature space. Our learning method is based on eigen-
vector decomposition [7] of the feature similarity (affinity)
matrices. We improve upon the existing work by showing
that the number of clusters governs the number of eigenvec-
tors used to span the affinity space. We are, thus, able to
automatically compute the optimal number of clusters us-
ing a new cluster validity score. Furthermore, the computa-
tional complexity of the proposed method is lower than the
k-means in case of the trajectories all have identical lengths,
which makes application of k-means possible, and the value
of the length is significantly higher than the number of tra-
jectories, which is common for tracking applications.

2. FINDING PATHS

A flow diagram of the event detection process is shown in
fig. 1. First, we fit an HMM model for each trajectory using
the identical model topologies. Then, we compute affinity



matrices that represents the similarity of two trajectories us-
ing the HMM parameters. Finally, we decompose the affin-
ity matrix to find the largest eigenvectors that are used to
obtain the clusters of trajectories. We determine the optimal
cluster number using a validity score.

2.1. Trajectories to HMM Parameters

A trajectoryT (t) of an object is represented as the collec-
tion of image coordinates that correspond to the center-of-
masses of the object shape in the consecutive frames. We
extract trajectories using a mean-shift and Gaussian mix-
ture model based object tracker presented in [8]. Since the
clustering requires such feature vectors that we can com-
pute pair-wise distance between them, the extracted trajec-
tories are transferred onto a parameter space. This parame-
ter space is spanned using the HMM parameters.

An HMM is a probabilistic model composed of a num-
ber of interconnected states in a directed graph, each of
which emits an observable output. Each state is character-
ized by two probability distributions: the transition distribu-
tion over states and the emission distribution over the output
symbols. A random source described by such a model gen-
erates a sequence of output symbols. Since the activity of
the source is observed indirectly, through the sequence of
output symbols, and the sequence of states is not directly
observable, the states are said to be hidden.

We use identical, left-to-right topology HMM’s with the
same number of states and same number of models in the
mixture. We assign the following attributes to define an
HMM; 1) a set of prior probabilitiesπ, 2) a set of state
transition probabilitiesB, 3) mean, variance and weights
of mixture modelsµ, σ, w. We prefer the left-to-right topol-
ogy since it can efficiently describe continuous processes
such as a trajectory. We train a HMM model using the tra-
jectory coordinates (as well as instantaneous speed and ori-
entation) as the training data. As a result, each trajectory is
assigned to a separate model. We, then, construct a vector
H = (π, B, µ, σ, w) using the HMM state transfer proba-
bilities, model means statistics and model weights, and the
prior probabilities.

3. FEATURES TO PATTERNS

For each trajectory, an affinity matrixA is constructed. The
elementsaij of the matrixA are equal to the similarity of
the corresponding trajectoriesi andj. The similarity is de-
fined asaij = e−d(Ti,Tj). Note that matrixA ∈ Rn×n is
a real semi-positive symmetric matrix, thusAT = A. The
distanced(i, j) is measured using a mutual fitness score of
the models and input trajectories as

d(Ti, Tj) = |L(Ti; Hi) + L(Tj; Hj)
−L(Ti; Hj)− L(Tj; Hi)| (1)

Fig. 1. Flow diagram.

TheL(Ti; λi), L(Tj; λj) terms indicate the likelihood of the
trajectories to their own fitted model, i.e. we obtain the
maximum likelihood response for the models. The cross
termsL(Ti; λj), L(Tj ; λi) reveal the likelihood of a trajec-
tory generated by the other trajectories model. In other
words, if two trajectories are identical, the cross terms will
have a maximum value, thus the distance will be equal to
zero. On the other hand, if trajectories are different, their
likelihood of being generated from each others model will
be small, thus the distance will be high.

For affinity matrix A there aren eigenvaluesλ with
associated eigenvectorsv which satisfyAv = λv. Let
V ≡ [v1 v2 .. vn] be a matrix formed by the columns of the
eigenvectors. LetD be a diagonal matrixdiag[λ1, λ2, .., λn].
Lets also assumeλ1 ≥ λ2 ≥ ..λn. Then the eigenvalue
problem becomes

AV = [Av1 .. Avn] = [λ1v1 .. λnvn] = V D (2)

andA = V DV −1. SinceA is symmetric, the eigenvectors
corresponding to distinct eigenvalues are real and orthogo-
nalV V T = V T V = I, which impliesA = V DV T .

3.1. Eigenvector Decomposition

The decomposition of a square matrix into eigenvalues and
eigenvectors is known as eigenvector decomposition. The
eigenvectors are computed iteratively. The main idea be-
hind the iterative computation is the following. Suppose
we have some subspaceK of dimensionk, over which the
projected matrixA has eigenvalueθk and a corresponding
eigenvectoruk. Let us assume that an orthogonal basis for
K is given by the vectorsv1,v2, ...,vk (already determined
eigenvectors). Quite naturally the question arises how to
expand the subspace in order to find a successful update
for uk, which will becomevk+1. To that end we compute
the defectr = Auk − θkuk. Then, we computẽz from
(D − θkI)z̃ = r, whereD is the diagonal matrix ofA as
defined above. The vector̃z is made orthogonal toK, and



the resulting vector is chosen as the newvk+1 by whichK
is expanded. This method find the largest eigenvalues in ab-
solute value. The matrix(D − θkI)−1 can be viewed as
a preconditioner for the vectorr. To avoid this stagnation,
we concentrate on thekth approximationuk of the eigen-
vectorv, whereuk is normalized||uk|| = 1. The residual
r = Auk− θkuk is orthogonal touk becauseθk = uT

k Auk

is the value associated withuk. We project the eigenvalue
problemAv = λv on span(uk), and on its orthogonal com-
plement. This leads to two coupled equations forλ and the
complementz of v orthogonal touk: λ = uT

k A(uk + z)
andz ⊥ uk, (I − ukuT

k )(A − λI)(I − ukuT
k )z = −r.

Sinceλ is unknown, we cannot compute optimal updatez
from uk. However it is reasonable to replaceλ by the cur-
rent approximationθk. Thus we obtainr ⊥ uk, (I −
ukuT

k )(A − θkI)(I − ukuT
k )z = −r as a good correction

for uk. Similarly, we compute the approximate solutionz̃
using this equation, and by making̃z orthogonal to search
space, we obtainvk+1. Briefly, we extract an approximate
eigenvalue from the search subspace, project it, solve the
projected eigenvalue problem, compute the corresponding
value and residual, correct the approximate eigenvectoru,
and expand the search subspace with the correction vector.

The above iterative prediction is used at the clustering
stage.

3.2. Clustering

Although eigenvector based clustering [3] is addressed be-
fore in the literature, to our knowledge no one has estab-
lished the relationship between the optimal clustering of the
data distribution and the number of eigenvectors that should
be used for spanning before. Here we show that the number
of eigenvectors is proportional to the number of clusters.

Let a matrixPk be a matrix in a subspaceK that is
spanned by the columns ofV such asPk = [v1 v2 .. vk, 0]
whereV is the orthogonal basis satisfiesA = V DV T .
Now, we define vectorspn as the rows of the truncated ma-
trix Pk as

Pk =




p1

...
pn


 =




v11 · · · v1k 0 · · ·
...

...
vn1 · · · vnk 0 · · ·


 (3)

We normalize each row of matrixPk bypij ← pij/
√∑k

j p2
ij .

Then a correlation matrix is computed using the normalized
rows by Ck = PkPT

k . For a givenPk, the value ofpij

indicates the degree of similarity between the trajectoryi
and trajectoryj. Values close to one correspond to a match
whereas negative values and values close to zero suggest
that trajectories are different. Letε be a threshold that trans-
fers values of matrixCk to the binary quantized values of

an association matrixWk as

wij =
{

1 cij ≥ ε
0 cij < ε

(4)

whereε ≈ 0.5. Then clustering becomes grouping the tra-
jectories that have association values equal to onewij = 1.

To explain why this works, remember that eigenvectors
are the solution of the classical extremal problemmaxvT Av
constrained byvT v = 1. That is, find the linear combina-
tion of variables having the largest variance, with the restric-
tion that the sum of the squared weights is 1. Minimizing
the usual Lagrangian expressionvT Av − λ(vT v − 1) im-
plies thatAv = λv. Thus,v is the eigenvector with the
largest eigenvalue.

As a result, when we project the affinity matrix columns
on the eigenvectorv1 with the largest eigenvalue and span
K1, the distribution of theaij will have the maximum vari-
ance therefore the maximum separation. With the same rea-
soning, the eigenvectorv2 with the second largest eigen-
value, we will obtain the basis vector that gives the best
separation after normalizing the projected space using the
v1 sincev1 ⊥ v2.

As opposed to using only the largest or first and sec-
ond largest eigenvectors, the correct number of eigenvectors
should be selected with respect to the target cluster number.
Using only one or two eigenvectors does fail for the case
of multiple clusters. After each eigenvalue computation of
matrix A in the iterative algorithm, we compute a validity
scoreαk using the clustering results as

αk =
k∑
c

1
Nc

∑
i,j∈Zc

pij (5)

whereZc is set of trajectories included in the clusterc, Nc

number of trajectories inZc. The validity score gets higher
values for the better fits. Thus, by evaluating the local max-
ima of this score we determine the correct cluster number
automatically. Thus, we answer the natural question of clus-
tering; ”what should be the total cluster number?”

As a summary, the clustering for a given maximum clus-
ter numberk∗ includes

1. ComputeA, approximate eigenvectors using Ritz val-
uesλk ' θk, find eigenvectorsvk for k = 1, .., k∗,

2. FindPk = VkV T
k andQk for k = 1, .., k∗,

3. Determine clusters and calculateαk,

4. Computeα′ = dα/dk and find local maxima.

The maximum cluster numberk∗ does not affect the deter-
mination of the fittest cluster; it only limits the maximum
number of possible clusters that will be searched.
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Fig. 2. (a) Set of trajectories, (b) corresponding affinity ma-
trix, (c) validity score, (d)result of automatic clustering.

4. EXPERIMENTS AND DISCUSSION

We simulated trajectory pattern learning by using the tra-
jectories given in fig. 2-a. In this set, there are 5 distinct
paths exist. We show the corresponding affinity matrix for
the pair-wise HMM parameter distances in fig. 2-b. We
obtained the optimal number of clusters using the validity
scoreα as presented in fig. 2-c. The maximum validity
score is computed forn = 5. The clustered trajectories after
eigenvector clustering are given in fig. 2-d. As visible, the
proposed method successfully found the correct clusters.

Figure 3 presents the detection results for two vehicle
traffic setups; a highway surveillance scenario (fig. 3-a), and
a street surveillance (fig. 3-c). The highway scenario has a
total of 153 trajectories that are automatically grouped into
2 separate paths as presented in fig. 3-b, where the clus-
ter validity score for this scenario reached its maximum
value. The street scenario has a total of 39 trajectories that
are accurately grouped into 7 clusters using the proposed
method. For both generic and real data simulations, the
proposed method accurately estimated the optimal number
of patterns, and accurately clustered the trajectories into the
estimated patterns.

In conclusion, the main contributions of this paper are:

• We proposed a new set of HMM based features that
enable detection of patterns, which could not be de-
tected using conventional representations.

• We showed that the number of largest eigenvalues (in
absolute magnitude) to span subspace is one less than
the number of clusters.
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Fig. 3. First row: (a) sample image, (b) detected paths. Sec-
ond row: (c) sample image, (d) detected paths.

• We proposed an unsupervised clustering framework
based on the above and successfully applied it to tra-
jectory pattern detection.
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